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CALCULATION OF A SUPERSONIC FLOW
AROUND A COOLABLE SPHERE USING THE

COMPLETE NAVIER-STOKES EQUATIONS

B. N. Pavlov

This work [1] presents a statement and a numerical solution for

a problem of a stationary flow around blunt solids by a super-

sonic flow of a low—density gas . The method is based on a finite—

difference approximation of the complete nonstationary Navier—~ tokes

equations for a compressible gas and on finding a stationary solu-

tion as a result of the determination. Works [l]— [3] present the

initial calculation result-s and examine certain methodological

problems which characterize the numerical algorithm . Work [LI ]

contains the calculation results for a flow past a heat—insulated

sphere . This work discusses a pattern of flow around a coolable

sphere under the conditions of small Reynolds numbers .

Desi g nat ions : r , 0 — spherical polar system of coordinates

(Fig. 1); r~ — sphere radius ; W — flow velocity vector; u , v - its

components with respect to r and 0; p~ h., T, p — density, enthaiphy ,

temperature, and pressure ; A , 3.1 — coefficients 0r heat conductivi-

ty and shear viscocity ; y — ratio of specific heats; q — heat

flow to the wall; T — friction tension ; F — force of resistance ;

C — coefficient of total resistance; C — friction coefficient ;D f
1 — mean free path of molecules; Re , Moo , X n , Pr — numbers of

Reynolds , Mach , Knudsen , and Prandl: d~ I — thickness and intensi-

ty of a shock wave ; p~, — stagnation pressure behind a normal shock ;
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— sonic line ; subscripts: oo — in an incident flow , w — on the

sphere surface , s — behind a normal inviscid shock , 0 — flow stag-

nated adiabatically and isentropically , flC — in a boundary layer ,

CM — in a free—molecular flow ; superscripts: 0 — in the leading

critical point , * — along the boundary ray 0*.

1. An examination is made of a viscous gas flow , which is uniform

and supersoni c at infinity , around a sphere . The problem concerning

the calculation of the flow field is solved under the following

assumptions : 1) the gas flowing past the sphere is thermically and

calorically ideal, 2) the coefficients A and ~i are power functions

of ent halpy (— h ’~, O,5~~ w~~~J) , 3) the flow has a laminar nature at
small Reynolds numbe rs , and LI ) under these conditions of flow the

• Navier—Stokes equations for the compressible gas are valid in the

entire area outside the sphere .

Conditions 1): and 2) lead to constant values of the numbers y

and Pr. Dimensionless variables are used: linear dimensions per-

tain to r~ , velocities — to Woo, density — t o  ~oo , enthalpy — t o W:,
pressure and tension of friction — to PooWoo, heat flow — to PooWco, i i

and force of resistance — to 1/2~tr~,p0.W~.

Work [1] shows the initial system of equations in a dimension—

less form relative to the unknowns p, U , v, h , p, and p in the

system of coor dinates r, 0. Since with a laminar nature the flow

has a symmetry relative to the 0=0 axis , it is sufficient to seek

a solution for the problem in the region r~l, 0~~8~ ir. According to

the systematic investigations , which are described briefly in [i ]

and [3], numerical integration can be accomplished in the end region
(Fig. 1) 1.~r~R2, ~~~~~~~ where R2 R2(O) 

— given equation for the

surface of rotation (in this case , o~’ an elliosoid whose left focal

point is congruent with the center of the sphere), 8* — oosit~ on
• of’ the boundary ray (0<0*.~ r).

Let us formulate the boundary conditions of the rroblen’. The

conditions of the uniformity of the flow at an infinite distance

from the sphere are removed to the surface R2
( 0 ) ,  0~ 0.~P* . On the

sphere the enthalpy (temperature ) of the s~irface coincides with

• the enthalpy of gas and is equal to the value h
~ 

(there is no ,i ump

in temperature ) and both velocity components are eaual to zero

2
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(there is no slip). On the axis 8=0 , 0=~r we use the conditions of
• symmetry of the flow. If 0*<ir , it is necessary to assign conditions

for the functions u, v, h along the ray 0=0* . By means of series

of calculations with a varied position of the angle 0* ,O<r3~ <7r it

was established that , when assigning the approximate conditIons

for these functions in the form of ~
2 f/a02=O (i. e. , a linear change

in f in the vicinity of the ray 0*) there is an insignifi cant reverse

effect of the flow . In this case the density p(r , 8*) can be found

from an analogous condition or from a continuity equation.

The finite—difference approximation of’ the initial eauations and

boundary conditions , and also the peculiarities of the numerical
• algorithm , are described in [l]—[3].

2. The study of the suoer— and hypers onic flow around blunt solids

with the cooling of their surface (h
~
<h0) Is of practical interest

in connection with the problem of heat protection ~‘or a flying

vehicle . Below we ’ll discuss the characteristic peculiarities a”
the viscous gas flow near the sphere placed in a supersonic flow

of a diatomic ideal gas (y=l , LI Pr=O.72 , o~~3/LI, h
~
=0.3). The ef-

fect of the Moo and Reoo numbers has been studied on the flow pattern

under the conditions of flow and heat exchange , which are indicated

in the table . The same table shows the Knudsen Kn and Re~’nolds Re~
(calculated using the parameterb behind the normal shock) numbers

which characterize the degree of rarefcation of the incident f’low :

Re ~~~~~-_____ _~~~~~~ _ = 
[ ~.(y + I )  

~
~~~~~~ M~’ L. 2y— (~— I)fM~ J

p. -p-. jj J~!_, ~~~~ = = 
~~~~~ 

_ __

? 5 2n R ,

With an increase in rarefaction there is an increase in the Kn

number an d a decrease in Re5. In most calculations 8*=990.

Let’s briefly describe the behavior of the gas—dynamic narameters

at the leading critical point in the area where the shock wave is

thickened and in a compressed layer behind it , an d also alon g th e
surface of the sphere . Since the calculations were accnr~rlished

for the flow conditions which occupy the intermediate position

3
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between the flows of the solid and free—molecular media , it is of’
inter est to compare the resu lts of t he ca lculation with the corre s-
ponding theoretical results and experiments in rarefied gases.

1. Leading critical point. The solid line in Fig. 2, a repre-
sents the behavior of the ratio p~/p~~, which characterizes the

deviation of’ the calculated pressure from the pressure in an in—

viscid flow , as a funct ion of Re1V~ . With a decrease in the

parame ter ,
~=Re1V~, (introduced for a convenience of the compari-

son with the experimental data [5], shaded area in this figure) the

values of p~ /p1 begin to increase approximately from n=l00 , which

Is in good agreement with the experiments and the theory of free—

molecular flows [ 6 ]  (with Re5=0 , 1=l .LI and totally diffused deflec-.

tion of’ the molecules from a hard , very cold wall the ratio PCM /P~
attains a value equalling to 1.087). An increase in pressure is

the result of’ merging of the thickened boundary layer and shock

wave .

The solid line in Fig. 2, b shows the behavior of the ratio

~~~~~~ as a function of’ the Re5 number. This ratio characterizes

the di!ference in heat transfer in a flow of rarefied gas and in

flows with large Reynolds numbers . The value was calculated

by the Fay and Riddell formula [ 7 ] ,  and

q~ (8) = ,
~ ~~~ (~& 

f-)
, 0<0< 0..

According to the theory of free—molecular flow q~~ =l/2 and the

ratio 
~~~~~~~~~~~~~~~~~~ which is proportional to YRe.. approaches zero with

an increase in rarefaction. The same figure shows the following :

the shaded area — data of a series of’ experiments (borrowed from

[5], the doe—dash line — ~~~~~~~~ the dashed line — the curve

£/qc=I+0,52,V~~ , obtained in [8] by processing the measurements

(the conditions of this experiment are close to the conditions of

these calculations : ~-~~=2 , LI, 6; 20,~Re5~ 800, T~/T0~0.33). In most

of the experiments carried out to determine heat transfer the

value has the following nature of change ; with a decrease

in Re. (0~~R1,c- I~) this value increases , here q!>q~ , attains

LI
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a maximum at certain Re. (10~~.~~,~~10~) , and then decreases

~q <q7c when Re,~~ IO}. •. The calculated values of q~/q~ detec t a
similar behavior; although they begin to decrease when Re5�lO , they

still remain higher than those determined in the experiments (with

t he same Re 5 number). Apparently , at low Reynolds numbers , Re5<l0
2 ,

one should take into account in the calculation the conditions of’
slip and temperature jump on the wall, which , in particular , lead

to a decrease in the values of’ the heat flow [9].
With a decrease in the Re5 number the density p~ increases In

proportion to p
~ since the hw is constant (with thermal insulation

a drop was observed in the density at the leading critIcal point

[LI] and [10]).

2. Shock wave structure. The thickness of a shock wave in a
viscous gas is usually determined by the formula proposed by Prandi:

A _ _________—

where f — any of the gas—dynami c functions , ôf/âr — maximum slope

of the p1~ofile f to the axis 0=0. In most of the experiments car-

ried out to study the shock—wave structure (for example , [11] and

[12]) the density field was measured and , therefore , thickness d

was calculated using the profile p in the area of the shock wave .

However , under the cooling conditions of the surface the calculated

density profiles p(r , 0) in the shock wave have a complex behavior

(see Figs . LI and 5) and it is difficult to use them for the calcula-

tion of d. For this it is more convenient to use the profiles

u (r , 0) and p(r, 0), which have approximately the same nature as
with thermal insulation . The calculation of the thickness o~’ the

shock wave using the profiles u (r, 0 ) ,  when Moo=6 and Reoo=300 , 200,

90, L15, and 20, yield the following values: d 0.055; O .08LI; 0.169;
0.286 ; and 0.LI 7LI . Thus , with an increase in rarefaction the shock

wave thickens quickly . The comparison of the thickness d In cases

of thermal insll.lation and cooling (with all other conditions being

equal) indicates a somewhat lesser thickness in the case of cooling.

The thickness of’ the transition zone in the shock wave , when there
is a change in the angle 0 , can be determIned conditionally by the

5
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value D(0)=r1(0)—r2
( 8) ,  where r1 and r2 are points at the fixed

ray 0: in r1 the value p—p00z0.01 P00, in r2 the c3p / dr attains a

maximum value in the shock wave . The position of the washed out

shock wave relative to the sphere can then be determined by the

middle line rD of the indicated zone . The dot—dash curve on F~ig.

6 shows the position of the line rD when Re~ =LI5 and ]~-~~=6. This

line travels in approximately the same way as a shock wave during

an inviscid flow but it is located further from the sphere. A

similar behav~ oi- of the shock wave zone was observed in an ex—

pen ment (see [5]). With a change in the numbers M~ and Re~ the

behavior of the value L
~
=rD—l, which can be roughly considered as

the “deDarture ” of the shock wave , has the following feature :

a) with a decrease in the number Re~ (M~ ,e are constant ) ~ increases;
b) with an increase in 0 (Re~~, M~ are constant ) ~ increases ; c)

with a change in the number ~~ ~~~~~ are constant ) this function

is not monotonic (see Fig. LI): for ~~~~~~~~ the ~ diminishes , for

Moo >LI it increases (the same behavior was observed in the calcula-

tions of a thermoinsulated sphere [LI]). The shock wave intensity

was determined by the value of the ratio I(B)= (
~ ~~~

—P
~~

) / (p
0 

— Pm ),

where 
~max 

is the value of maximum pressure in the area of the

shock wave at the fixed ray B. It was found that with an increase

in 0 the function 1(0), for all the flow conditions examined , de-

creases (for example , when Moo=6; L(O)=O.9L7;1(-!~)=0.238 for

Re,.=200 and I(0) O.882.i(~~)O .I93 for Re~ =LI5).

Thus , with an increase in the angle 6 and a decrease in the Re~
number , there is a continuous (according to r) washing out and
weakening of the shock wave (just as in the case of thermal insula-

tion [l]— [3]).

3. S t ruc ture o f a c omn ressed la y er. Figure 3 (a , b , c )  show s

a typical behavior of’ the flow parameters in a compressed layer

( r 1~~~=8 , Reoo 90), where , for comparison , the dashed lines show the

solution when 0 0  in the case of thermal insulation of the snhere .

From an analysI s of the calculated data we draw the fol lo~’~ n~ con-
clusions . The enthalpy h (r, B) has a maximum an each ray P due to

6
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the cooling of the sphere ’s surface . The density p(r, 0) has a

local maximum immediately behind the shock wave as it moves away

from the region of the leading critical point , and maximum pressure

p(r, 0) is attained between the shock wave and wall; with the low

values of 0 the maximum pressure p(r , 0) is on the ‘~rall. With a

relative ly large Re5 number s ( for example , when M~=2 and Re~~ 500)
there is an area close to the sphere ’s surface in whi ch the pres-

sure along the normal to the wall changes insignificantly , which

indicated the existance of a region of the type of a boundary layer.

The position of the sonic line r~ (0) is depicted in Fig. 6 for
the various Re~ 

(M
~=6 , solid lines) numbers and in 

Pig. 8 for the
various M~ 

(Re
~=90 , solid lines) numbers . It is evident that with

a change in 0 and M~ (Fec., is constant) the behavior of these lines

is nonmonot onic . For a constant M~ number sonic lines move further
away from the sphere ’s surface with a decrease in the Re~ numbe r.

Let us examine in more detail the behavior of the solution along

the stagnation line 0=0. Figure LI characterizes the behavior of
u and p with a change in the M~ (Rec,, 90) number. Using profiles

u(r , 0) we can clearly see the nonmonotoni c nature of “departure ”

of the shock wave noted above . The density increases along the

0=0 axis when r -* 1; here there are regions of sharp increase of

p in the shock wave and close to the body (the latter is the result

of cooling of the surface). Both these regions have a tendency to

merge with an increase in the M~ number and the fixed Re~ number

(i. e., with a decrease in the Re5 number) (Figs . 
24 and 5).

Figure 5 shows the distribution of the density p(r , 0) and
enthalpy h(r, 0) when M~=6 and a change in the Re~ number. it is

evident that with a decrease of the Re~ number (and , con~eauent 1y ,
Re5 number) the max imum value of h (r , 0), which is achieved behind
the shock wave , also decreas es and hmax <h s • If we take the point

r, where the maximum h (r, 0) is achieved , to be the trailing rr’ont

of the washed—out shock wave , it turns out that , at this paint , t’~e

density p(r , O)<p ,~ and p(r , 0)<p 5 , I. e., an incbmnleté comn res—
slon in the shock wave , leads to disruption of the Renkin—Hugoniot

conditions and to its gradual disintegration with an Increase in

rarefaction. With an increase in rarefaction Its gradual thicken—

7 
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ing is evident in the area of the shock wave according to the

profiles of h(r, 0). Approximately the same behavior of the density

and tempers’ -ire was observed along the line of stagnation in the

experiment of work [13], in which nitrogen flowed past a cylinder

wi th a sp her ica l  b lunt  end (N ~ = 9 ,  K n = 0 . 0 L I 5 ,  T0=2 9 8 °K , and Tw /T o~ 0~~3)~
The field temperature s determined in [3] a t tes t  to the presence of
a noticeable temperature jump on the model surface (T°/T 0.78 when

T~1/T0~ 0.3 
at the leading critical point).

4. Distributions along the surface of Vie snhere. Figure 7
shows the graphs of the deduced pressure p~=p~(O)/p~ (O) and heat

flow q~ ( 0 -) when ~-t,,=6 and with different values of the Re~~. In the

same figure the dot—dash line depicts the function c1
~~

=cos6/2 , the

dotted line — ~~~~ obta ined from the ca l cu la t ion  of the boundary
layer on the sphere [lLI] (M ...,=1O, Re—IO6,~~= 1 ,4, T/To=O,6), the

dashed line — p~(O) when M.,~,=6.Re,.=oo ([7], chapter 8). lTith

a decrease in the Re~ number the values of gradually increase

on the front section of the sphere and they are higher than the

corresponding values in an inviscid flow . With an increase in the

angle 0 the function ~~ (O) decreases gradually and with a decrease

in the Re~ the values of q~ (O) increase; in this case , qnc<q0<qcM .

The nature of change in the calculated heat flow is in agreement

with the experiments [8] and [15].
Figure 8 shows the friction coefficient graphs C1 = -~,Ip..W~,=

Re~~(iL
Or.1IOr)~ 

for Re~ =90 and the various M.,~, numbers (solid lines).

In the same figure the dot—dash line depicts the function

[Cf(0)JcM=(sin 2O)/2. the  dashed line — [Cj(O)Jnc taken from

work [1LI]. All calculation curves of Cf(9) are located between the
curves for the free—molecular and boundary—layer conditions of

flow . The values of C~ increase w i th a decrease in the Re~ number .
With a change In the angle 0 the function C~~( 0 ) has a max~ n~um for
the various Re~ numbers when e-LI0— 6o degrees , i . e . ,  about in the
middle of the area of a sharp approch o~ the sonic Une to the

sphere . In the calculations of the boundary layer on blunted solids
• [16] it was found that the maximum values of the functian Cf

(P)

were obtained in the vicinity of’ the sonic point on the surface
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of the streaiciined body . The behavior  of the func t i ons  and C 1
is analogous to the case of thermal in~ulation when there is a

decrease in the Re~ number [ L i ] .

Figure 9 shows the  cons t ruc t ion  of the ra t io  C
fl

/ ( C D ) C~,4 as a
function of the number 2Re , the shaded areas indicate the data of

the experiments carried out to determine the resistance of spheres

[5]. The quantity CD was calculated by the formula CD= 4S(pucoso+

C1 shi O) sIn O dO, and (C D)CM by the formula used to calculate the
diffused deflection with the accommodation coefficient eoualling

unity [6]. It is obvious that in the examined conditions of flow
• CD< (CD)CM , while the ratio being exam~ine~L increases with a de-

crease in the Re number.

3. The numerical results indicate that wne- -: Re .~lO
2 the shock

wave and the boundary layer join in the area of the leading critical

point of the sphere , which leads to a series of new phenomena which

do not take place in flows with large Reynolds numbers . With

reduced rarefaction the calculated aerodynami c characteristics

have a tendency to  approach the corresponding values in a free—
molecular flow and , in the range l0.~Re 5~ l02, there is a satisfac-
tory agreement between them and the measurements derived from the

experiments. When Re5.~lO there is a certain anomaly in the behavior

of some characteristics of the flow , which can be explained by the

fact  tha t  the e f f e c t s  of slip and temperature jump were disregarded
in these calculations . Apparently , when taking these effects into

consideration within the framework of the Navier—Stokes model , there

should be a better agreement with the experiments also at lower

Reynolds numbers (Fe 5<lO). The same conclusions are d - ~ rn from the

analysis of flows with thermal insulation of the sphere ’s surface

[ L I ] .  Thus , one can assert that the numerical solutions of the
problem of flow in this setting afford the description of the

phenomena in a compressed layer, which are close to those observe d

in e x p e r i m e n t s .
The author expresses his aporeciation to Z. ~~~~. Yemel’yanov and

L. V. Kuzne t sov  who took part  in ca lcu la t ions  and process~~nr- of the
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results.
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Table

~~~ h~~/h~, 1 ~ I ‘
~
‘

2 500 0,267 338 0,006
2 90 0,267 61 0.033
4 - 300 0.457 105 0,020
4 90 0,457 - - 32 0,067
6 300 0,527 63 0,030
6 200 0,527 42 0.045
6 90 0.527 19 0,100
6 45 0,527 9.5 0,200
6 .20 0,527 4,2 0.450
8 90 0,557 13 0.133
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Fig. 2. Behavi or of p~/p (a )  an d q~ /q°~ (b )  at the
leading critical point .
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